
IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 32

A Study on Cryptographic Algorithm and

Key Identification Using Genetic Algorithm

for Parallel Architectures

Sunar Mohammed Farooq
1
, Nageswara Reddy Karukula

2
, J.David Sukeerthi Kumar

3

Assistant Professor, SREC, Nandal, AP, India1,2,3

Abstract: Presently a day, the measure of exchange of information over huge system is expanding step by step. As
there is increment in information exchange, at the same time there are security dangers that are emerging with it. In this

paper we are proposing cryptographic frameworks that make utilization of hereditary calculation to safely exchange the

information over expansive system. This methodology helps us to give high achievability to exchange information

safely. The methods that we are utilizing for encryption & decoding are focused around hereditary calculation which

will help us to effectively scramble the information which is resistible for any sort of outer assaults. At that point we

will parallelize it utilizing Open Mp dialect which quickens the change of information to attain high security. At that

point break down the execution for both code serial and parallel execution.

Keywords: The genetic algorithm, Linear generation Equation, Genetic operator, Open MP.

I. INTRODUCTION

Now a days computer networks are becoming more important for exchanging information. One of the most important

requirement of these networks is to provide secure transmission of information from one place to another.

Cryptography is one of the technique which provides most secure way to transfer the sensitive information from sender

to intended receiver. Its main purpose is to make sensitive information unreadable to all other except the intended

receiver. Any cryptography algorithm provides following features:

• Privacy/Confidentiality – only intended receiver can read the message.

• Integrity – Assurance that the data received by the receiver has not been altered in the way and it is same as original.

• Authentication – Process to prove the identity of communicating devices.

Wide varieties of cryptography algorithms are available for hiding the sensitive information. But most of the algorithms

have many performance limitations such as memory requirement, execution time and computation power. So one of the

solution to improve the performance of these algorithms is parallel computation. Parallel computation is a method in

which several computations can be carried out simultaneously on two or more microprocessors. Parallel computation

can be performed by using multicore and multiprocessor computers having multiple processing elements within a

single machine.

II. RELATED WORK

Cryptography is a process of protecting information by transforming it into unreadable form called cipher text.

Cryptography not only protects data from theft or alteration, but can also be used for user authentication. In general,

three are three types of cryptographic schemes typically used to accomplish these goals: secret key (or symmetric)

cryptography, public-key (or asymmetric) cryptography, and hash functions. In all the cases, the initial unencrypted

data is referred to as plaintext. Plain text is encrypted into cipher text, which will in turn (usually) be decrypted into

usable plaintext.

Wide varieties of cryptography algorithms are available for hiding the sensitive information. Some of the cryptography

algorithms are Advanced Encryption algorithm (AES), DES, HIGHT, International Data Encryption Algorithm

(IDEA), Scalable Encryption algorithm (SEA), TEA, RC5, RC6, Skipjack etc. But most of these algorithms have many

performance limitations such as memory requirement, execution time and computation power. Memory requirement for

some of the algorithms are as follows (in bytes):

Cipher IDEA TEA SEA AES DES HIGHT

Code Size 1992 1050 732 6120 4314 888

Figure 1 Code size for different algorithms

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 33

All of the above cryptography algorithms performs arithmetic operations like byte substitution, rotation, XOR, finite

field multiplication, modular multiplication, addition and subtraction. So, all of these algorithms requires more

execution time. RC5, TEA, HIGHT, and SEA have moderate code size because of their simple structure. IDEA has a

little larger code size as it needs complicated modular multiplicative inverse computation that also brings high burden

for initialization. The code size of PRESENT mainly comes from bitwise permutation. AES’s complicated algorithm

structure results in its largest code size and Skipjack’s overhead is due to its structure optimization for performance.
TEA and SEA almost need no SRAM as there are no storage requirements for S-box and key schedule.

The SRAM overhead of SkipJack and RC4 mainly comes from S-box and that of RC5, IDEA, HIGHT and PRESENT

mainly comes from key schedule. AES has more than two times of overhead compared with other candidates as it

needs two S-boxes respectively for encryption and decryption. The SRAM overhead represents the worst case as

performance and memory tradeoff can be considered. If performance degradation is allowed, the S-box can be stored in

other place, such as program memory and EEPROM, and the key schedule can be generated only when it is to be used.

Then, the SRAM can be shared with other function modules.

RC4 is the best in terms of encryption/decryption, because in this clock cycles overhead which is consistent. However,

taken initialization into account, RC4 is no longer the best, because initialization is required before each
encryption/decryption process of RC4, which corresponds to larger encryption/decryption overhead. SkipJack seems to

be a better choice because for this encryption/decryption overhead is a little higher than RC4, but there is no

initialization overhead. The main drawback of skipjack is relatively large code size because of it’s special structure.

The whole encryption/decryption process of SkipJack can be expressed as a complicated expression, so that cipher text

can be directly expressed in terms of plaintext, not immediate results. For AES algorithm encryption/decryption

overhead is little better compared to RC5 algorithm.

However, the complicated structure of AES algo. leads to the highest program memory overhead among the candidates.

IDEA behaves well during encryption and decryption process, although it has the highest initialization overhead. The

initialization overhead of IDEA mainly comes from computing modular multiplicative inverse. Compared with AES

and RC5 algorithms, encryption/decryption overhead of IDEA is much better. Among the embedded computing

oriented algorithms, HIGHT algorithm provides better performance than SEA and PRESENT. Because of simple
structure, no. of clock cycles taken and memory overhead together, HIGHT may be the optimal candidate. It achieves

better performance with less memory overhead. SEA and PRESENT does not have better performance. SEA algorithm

requires a relatively large round number to provide adequate security, which is 2~7 times than other block ciphers.

PRESENT algorithm has a basic operation of bitwise permutation. It has no performance overhead in hardware

implementation as it only needs wiring, for software implementation it is very expensive because there is not direct

assembly instruction support. So, Implementation of most of the cryptography algorithm has various overheads like

memory requirement, execution time, power consumption etc.

One of the solution to reduce the execution time for these cryptography algorithms is by using parallel computation.

Parallel computation is a method in which several computations can be carried out simultaneously on two or more

microprocessors. Parallel computation can be performed by using multicore processors having multiple processing
elements within a single chip. OpenMP is an application programming interface which provides various compiler

directives and library routines for parallel implementation. So, by making the use of OpenMP API we can parallelize

the execution of any specified cryptography algorithm between multiple cores in order to reduce the execution time of

the algorithm.

We realize that, Cryptography is the investigation of encoding the data & delivering limitless information which is

muddled by the third individual who is getting to information without former authorization of sender or collector.

Presently a day different application like the informal communication, business applications, E-trade, in military or

satellite correspondence and so forth need part of information transmission over substantial information system. Here is

the fundamental sympathy toward protection comes into picture. As the above said territories are all that much helpless

against assaults numerous scientists are chipping away at it. We as of now have numerous calculations for scrambling

& unscrambling the information.

Encryption is a procedure of moving basic content into figure content and unscrambling is a methodology moving

figure content into straightforward content which is meaningful And create a key which is an imparted between

techniques of cryptography [9]. Encryption and decoding are inverse to one another for changing data [10].

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 34

Fig 2 Encryption and Decryption

The hereditary calculation that we are utilizing takes mix of peculiarities of cryptography and hereditary administrator.

The hereditary administrators that we are utilizing are hybrid & transformation. In hybrid we consolidate two strings to

show signs of improvement string. The change is the methodology of changing any bit from the given set of bits. So

here we can utilize the idea of Open Mp to parallelize the code. The era of arbitrary number can likewise be

parallelized so we will dependably get distinctive randomized number from diverse distinctive strings. Here we are

utilizing the idea of symmetric key.

In the cryptography there are two sorts by which we can encode and decode the content i.e. symmetric and asymmetric

key. The cryptographic framework in which sender & receiver utilize the same key for encryption & decryption

information is called symmetric key cryptography[1]. The Cryptographic framework in which sender and recipient

utilize the distinctive key for encryption & unscrambling information is called unbalanced key cryptography. As we

know the information to be exchange is extensive we require extremely proficient & quick calculation to scramble or

decode it [9]. The parallelization of genetic algorithm yields better execution that will be extremely helpful for

exchanging vast information safely utilizing this parallelized code [8]. Presently we will examine all the issues in subtle

element.

2.1. Linear generator Equation:

Firstly here we a create a sequence of random number by using Congruential method then next generation number

random number with the help of Crossover and Mutation which is a operator for genetic algorithm.

Xn+1 = (s * Xn + T) mod m; (1)

Xn= a randomly generated value initially it is assume.

s= multiplier which randomly generated

T= increment which randomly generated

 m= modulus (0<m<10)

2.2. Generic Operators:

From the three operators of genetic algorithm i.e. CROSSOVER, SELECTION and MUTATION [6] here we will be

using only two operators i.e. Crossover and Selection for our purpose.

A. Crossover

It is a genetic operator which is used to join two strings to get an efficient string. In this process we take more than one

parent process and generate a child solution for that process [2] this crossover genetic operator generate random

number which perform in parallel.

There a three types of crossover[6]:

 Trade of uniform crossover

 one site Crossover

 Cut and splice

Message

in Plain

text

Message

in cipher

text

Message

in Plain

text

Message

in cipher

text

Encryptio

n
Decryptio

n

Insecure

network

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 35

In this paper we will be concentrating on one site Crossover. This strategy is chosen as a result of its playing point over

conventional systems that we can undoubtedly trade data through it viably according to our prerequisites. We realize

that the information while moving is changed over into bits and afterward sent over the system so our next strategy i.e.

MUTATION changes any bit randomly from the set of bit to achieve high security. As the bits are transformed its

extremely troublesome for interloper to withdraw the data from it. As we are going to parallelise the code the diverse

genetic algorithm bits.

III. CRYPTOGRAPHY: GENETIC ALGORITHM APPROACH

3.1. Algorithm

3.1.1 Generation Linear Equation of First order using Random Number [7].

In this we use Linear Equation for generating first order variables[5]. Initially we will consider four random variable s,

T, m. Xn. Now as per our formula of generating linear equation we will substitute this assumed 4 values to calculate

next value. After that iteratively we will put the value of Xn+1 that is generated from the previous calculation. This

iterative process will terminate only when it will complete the iterations equal to the length of the message. Here we

can see that the initial parameters are unchanged throughout the process. A good randomization function must be used

to get better initial values[6].

3.1.2 Crossovers and Mutation:

After the above defined process we have some random numbers generated that are equal to the length of message. Now

this numbers are converted into binary formats and length of each binary number is equated by padding some zeros at

the beginning of that number[4]. Now here we will be using the crossover operation of genetic algorithm in which we
will swap some bits of one string with the other string. At this stage two numbers are differently changed from their

initial values to the new values. Let’s illustrate it with an example.

For, Example consider two numbers of 8 bit,

187 10111100 10000100

132 10000100 10111100

As of now we have just performed crossover now we will deal with mutation. Mutation is the process of changing the

bit from the available set[3]. Here is the main function of mutation operator to change the bit any the selection of bit

which is to be changed is done probabilistically so security increases. Finally after performing Crossover & mutation

for several iterations we will get series of randomized number that we will again convert into decimal format for our

further use.

Now the numbers which we will get finally will be in decimal format, so we will select the smallest number from it &

the specific digit that is mutually decided between two parties will be subtracted from the ASCII value of our text

message and the number which we will get after that is sent over the network along with the key.

3.2. For Example

3.2.1 Encryption

In this method the simple text converted into cipher text, using above algorithm

 Let, message is ABCDEFGHIJ its length is 10.
Now applying linear Congruential equation, we will get the generated numbers that are similar in length of text

message i.e.10. Let, numbers are: 106, 239, 538, 1211, 2725, 6132, 13798, 31046, 69854 and 157172. Now, Select two

numbers from a group that starting (106,239), (538, 1211), (2725, 6132), (13798, 31046), (69854, 157172).

Then apply crossover and mutation iteratively:

106= 0000000001101010

239=0000000011101111

After performing crossover

0000000101101010 =362

0000000111101111=495

After applying mutation, numbers are (394, 271). Now we easily identified how group pair is changed from (106,239)

to (394,271). However we find that both crossover and mutation increases security and after performing some iteration

the whole data become secure.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 36

Now after first iteration of crossover and mutation number will be obtained

 (394, 271, 1018, 1371, 2885, 5652, 13318, 30886, 35215, 39069)

Now took a smallest number i.e. 271 and subtract second right digit from ASCII values of each character of message.

Table 1 Encryption procedure

The encrypted message is > @CA=@D@GJ

The Cipher text

{ 56,59,66,61,61,65,70,64,72,68 {key of {s, T, m, Xn }

3.2.2 Decryption

At a user side we get a whole encrypted data along with key {s, T, m, Xn}. As we know decryption is an opposite

process of encryption for that a receiver side inverse of encryption will be perform[8]. After that many iteration

perform in decryption as they performed in encryption using cipher key.

Table 2 decryption procedure

Cipher

text

Number to

be added

ASCII

Values

Input

Data

56 9 65 A

59 7 66 B

66 1 67 C

61 7 68 D

61 8 69 E

65 5 70 F

70 1 71 G

64 8 72 H

72 1 73 I

68 6 74 J

IV. RESULTS

As our primary point is to parallelize the project to get quick yield as per that we tried it for different number of words

size. Here we display the table speaking to the throughput and the graphical representation.

(A) For 2 core machine:

File

Size

Serial

Execution

Time

Parallel

Execution

Time

Speed

Up

1MB 0.33min 0.19min 1.67

10MB 1.5min 0.82min 1.81

50 MB 11.2min 5.6min 2

100MB 21.4min 9.5min 2.25

150MB 37.3min 13.4min 2.78

Input
Data

Ascii
Values

Generated
number

Number to be
substracted

Cipher
text

A 65 394 9 56

B 66 271 7 59

C 67 1018 1 66

D 68 1371 7 61

E 69 2885 8 61

F 70 5652 5 65

G 71 13318 1 70

H 72 30886 8 64

I 73 35215 1 72

J 74 39069 6 68

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 37

(B) For 4 core machine:

(C)For 8 core machine:

(D) Performance Analysis:

We can see that parallelised project gives better yield as far as time taken by system to execute.

X- axis: File Size Y-axis: Type of machine

Fig 3 Graph showing the perfomance analysis

V. FUTURE WORK

As we can see from the performance of our algorithm on different-different cores we can predict the future speed up

for given large size of File.

y axis – File size

File Size Serial
Execution
Time

Parallel
Execution
Time

Speed
Up

1MB 0.33min 0.07min 4.67

10MB 1.5min 0.28min 5.2

50 MB 11.2min 1.49min 7.51

100MB 21.4min 2.4min 8.9

150MB 37.3min 3.49min 10.67

File Size 2 Core 4 Core 8 Core

1MB 1.67 3 5.67

10MB 1.81 3.12 6.2

50 MB 2 4.12 8.51

100MB 2.25 6.3 9.9

150MB 2.78 7.89 11.67

0

2

4

6

8

10

12

2 core

4 core

8 core

File

Size

Serial

Execution

Time

Parallel

Execution

Time

Speed

Up

1MB 0.33min 0.11min 3

10MB 1.5min 0.48min 3.12

50 MB 11.2min 2.71min 4.12

100MB 21.4min 3.4min 6.3

150MB 37.3min 4.72min 7.89

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 38

Fig 4 speed up Curve for known file size

In this curve, we can see that the speed up factor is seems to be increasing as there is increase in the file sizes in a

constant growth rate. Now we are using logarithms for transfroming this equation into linear equation.

The linear equation is as follows,

Y = m + cX (2)

Where,

 c = constant

 m = speed up factor

Projected values:

Table 3 projected values

File Size 8 Core Projected

Values

1MB 5.67 5.67

10MB 6.4 6.4

50 MB 8.51 9.64

100 MB 9.9 13.69

150MB 11.67 17.7

200MB 21.81

300MB 29.92

400MB 38.01

500MB 46.13

Fig 5 Speed up curve for projected values

VI. PROOF

We can prove it by using mathematical formulas. Lets consider the speed up on 8 core machine for a given size file
then it will follow the equation (2) i.e. Y = c + mX

Solution: We will use mathematical formulas for proving the above statement.

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

 International Advanced Research Journal in Science, Engineering and Technology

ICRAESIT - 2015

B V Raju Institute of Technology, Narsapur

Vol. 2, Special Issue 2, December 2015

Copyright to IARJSET DOI 10.17148/IARJSET 39

For 8 core machine,

Lets take initial values of X & Y

Y = 5.67 for file size of X = 1MB

Y= 6.4 for file size of X = 10MB

Putting this value in our equation,

We will get,
 c = 5.58, m = 0.0811.

so now extending it to size of 100MB,150 MB it comes true.

For all values it will come true so we can say that this equation holds for all given size of file.

VII. CONCLUSION

We can see that the genetic algorithm operator that we have used gives better performance as compared to other

algorithm. On the off chance that we compose the same letter set in our message like ZZZZZZ still it will create diverse

key and the worth for every letters in order. The quantity of times we iteratively rehash the methodology of hybrid &

transformation we would be continue getting more secure encryption. Indeed fruitful parallelization yields better brings

about terms of execution time. As we have not yet utilized all the operations of hereditary calculation in future we can
utilized it show signs of improvement security.

REFERENCES

[1] Benjamin Arazi, ―Vehicular Implementations of Public Key Cryptographic Techniques‖, IEEE TRANSACTIONS ON VEHICULAR

TECHNOLOGY, VOL. 40, NO. 3,pp 646-653, AUGUST 1991.

[2] Murat Kantarcioglu, Wei Jiang, Ying Liu, and Bradley Malin, ―A Cryptographic Approach to Securely Share and Query Genomic Sequences‖,

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 5,pp 606-617, SEPTEMBER 2008.

[3] Jong-Bae Park, Young-Moon Park, Jong-Ryul Won, and Kwang Y. Lee, ―An Improved Genetic Algorithm for Generation Expansion

Planning‖, IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 15, NO. 3, pp 916-922,AUGUST 2000.

[4] K. F. Man, K. S. Tang, and S. Kwong, ―Genetic Algorithms: Concepts and Applications‖, IEEE TRANSACTIONS ON INDUSTRIAL

ELECTRONICS, VOL. 43, NO. 5,pp 519-534, OCTOBER 1996.

[5] R. H. Torres, G. A. Oliveira, J. A. M. Xexéo, W. A. R. Souza and R. Linden, ―Identification of Keys and Cryptographic Algorithms Using

Genetic Algorithm and Graph Theory‖, IEEE LATIN AMERICA TRANSACTIONS, VOL. 9, NO. 2, APRIL 2011.

[6] Thang Nguyen Bui and Byung Ro Moon, ―Genetic Algorithm and Graph Partitioning‖, IEEE TRANSACTIONS ON COMPUTERS, VOL. 45,

NO. 7,pp 841-855 JULY 1996.

[7] Yao-xue zhang, Kaoru Takahashi, Nor10 Shiratori, and Shoichi Noguchi, ―An Interactive Protocol Synthesis Algorithm Using a Global State

Transition Graph‖, IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 3,pp 394-404, MARCH 1988.

[8] Sunar Mohammed Farooq K Nageswara Reddy ― Implementation of Intrusion Detection Systems For High Performance Computing

Environment Applications. INTERNATION JOURNAL OF SCIENTIFIC ENGINEERING AND TECHNOLOGY RESEARCH ,Vol 4 issue

41, Oct 2015.

[9] Franciszek Seredynski and Albert Y. Zomaya, ―Sequential and Parallel Cellular Automata-Based Scheduling Algorithms‖, IEEE

TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 13, NO. 10, pp 1009-1023,OCTOBER 2002.

[10] Yi-Ta Wu, and Frank Y. Shih, ―Genetic Algorithm Based Methodology for Breaking the Steganalytic Systems‖, IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 36, NO. 1, pp 24-31,FEBRUARY 2006.

[11] Jun-Hong Chen, Ming-Der Shieh and Wen-Ching Lin, ―A High-Performance Unified-Field Reconfigurable Cryptographic Processor‖, IEEE

TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 8, pp 1145-1158,AUGUST 2010.

